精东传媒app

USQ Logo
The current and official versions of the course specifications are available on the web at .
Please consult the web for updates that may occur during the year.

ELE3107 Signal Processing

Semester 2, 2020 Online
Short Description: Signal Processing
Units : 1
Faculty or Section : Faculty of Health, Engineering and Sciences
School or Department : School of Mechanical and Electrical Engineering
Student contribution band : Band 2
ASCED code : 031399 - Electrical, Electronic Enginee
Grading basis : Graded

Staffing

Examiner:

Other requisites

Recommended prior or concurrent study - ELE2103

Rationale

Digital signal processing is essential in many telecommunications, instrumentation, measurement, control and power applications. As such, a working knowledge of digital sampling and discrete-time processing provides an essential basis for understanding existing engineering systems, and facilitates the design of new systems for emerging applications.

Synopsis

Signal processing is the treatment of signals to enable detection, classification, transmission or enhancement. Such signals may, for example, be the apparent noise generated by a mechanical process, music, speech or other audio, or a video image. This course aims to give the student a thorough grounding in the theoretical and practical aspects of digital signal processing. Practical applications of signal processing are emphasised via directed experimentation and assignment work.

Objectives

The course objectives define the student learning outcomes for a course. On completion of this course, students should be able to:

  1. distinguish between a deterministic and a random signal;
  2. describe any signal probabilistically in terms of amplitude and spatial, frequency or temporal functions;
  3. describe a deterministic signal in terms of transforms and difference equations;
  4. design and implement signal processing algorithms for sampled signals such as audio;
  5. design and implement signal processing algorithms for sampled two-dimensional signals such as images;
  6. design and implement digital filter algorithms for signal conditioning problems;
  7. be able to implement signal processing algorithms such as Fourier transforms, convolution, correlation, and filtering.

Topics

Description Weighting(%)
1. Fourier analysis 20.00
2. Random processes 20.00
3. Digital signal processing 50.00
4. Information theory 10.00

Text and materials required to be purchased or accessed

ALL textbooks and materials available to be purchased can be sourced from (unless otherwise stated). (https://omnia.usq.edu.au/textbooks/?year=2020&sem=02&subject1=ELE3107)

Please for alternative purchase options from USQ Bookshop. (https://omnia.usq.edu.au/info/contact/)

Leis, J 2011, Digital signal processing using MATLAB for students and researchers, John Wiley & Sons, Hoboken, New Jersey.
MATLAB Student Edition.

Reference materials

Reference materials are materials that, if accessed by students, may improve their knowledge and understanding of the material in the course and enrich their learning experience.

Student workload expectations

Activity Hours
Assessments 52.00
Examinations 2.00
Private 精东传媒app 101.00

Assessment details

Description Marks out of Wtg (%) Due Date Objectives Assessed Notes
ASSIGNMENT 1 200 20 09 Sep 2020 1,2,3,4 (see note 1)
ASSIGNMENT 2 200 20 07 Oct 2020 4,6,7 (see note 2)
ONLINE EXAMINATION 600 60 End S2 1,2,3,4,5,6,7 (see note 3)

Notes
  1. This will be an open examination. Students will be provided further instruction regarding the exam by their course examiner via 精东传媒appDesk. The examination date will be available via UConnect when the official Alternate Assessment Schedule has been released.

Important assessment information

  1. Attendance requirements:
    There are no attendance requirements for this course. However, it is the students' responsibility to study all material provided to them or required to be accessed by them to maximise their chance of meeting the objectives of the course and to be informed of course-related activities and administration.

  2. Requirements for students to complete each assessment item satisfactorily:
    Due to COVID-19 the requirements for S2 2020 are:
    To satisfactorily complete an individual assessment item a student must achieve at least 50% of the marks for that item.

    Requirements after S2 2020:
    To satisfactorily complete an assessment item a student must achieve at least 50% of the marks or a grade of at least C-. Students do not have to satisfactorily complete each assessment item to be awarded a passing grade in this course. Refer to Statement 4 below for the requirements to receive a passing grade in this course.

  3. Penalties for late submission of required work:
    Students should refer to the Assessment Procedure (point 4.2.4)

  4. Requirements for student to be awarded a passing grade in the course:
    Due to COVID-19 the requirements for S2 2020 are:
    To be assured of receiving a passing grade a student must achieve at least 50% of the total weighted marks available for the course.

    Requirements after S2 2020:
    To be assured of receiving a passing grade a student must obtain at least 50% of the total weighted marks available for the course (i.e. the Primary Hurdle), and have satisfied the Secondary Hurdle (Supervised), i.e. the end of semester examination by achieving at least 40% of the weighted marks available for that assessment item.

    Supplementary assessment may be offered where a student has undertaken all of the required summative assessment items and has passed the Primary Hurdle but failed to satisfy the Secondary Hurdle (Supervised), or has satisfied the Secondary Hurdle (Supervised) but failed to achieve a passing Final Grade by 5% or less of the total weighted Marks.

    To be awarded a passing grade for a supplementary assessment item (if applicable), a student must achieve at least 50% of the available marks for the supplementary assessment item as per the Assessment Procedure (point 4.4.2).

  5. Method used to combine assessment results to attain final grade:
    The final grades for students will be assigned on the basis of the weighted aggregate of the marks (or grades) obtained for each of the summative assessment items in the course.

  6. Examination information:
    Due to COVID-19 the requirements for S2 2020 are:
    An Open Examination is one in which candidates may have access to any printed or written material and a calculator during the examination.

    Requirements after S2 2020:
    In a Closed Examination, candidates are allowed to bring only writing and drawing instruments into the examination.

  7. Examination period when Deferred/Supplementary examinations will be held:
    Due to COVID-19 the requirements for S2 2020 are:
    The details regarding deferred/supplementary examinations will be communicated at a later date.

    Requirements after S2 2020:
    Any Deferred or Supplementary examinations for this course will be held during the next examination period.

  8. 精东传媒app Student Policies:
    Students should read the USQ policies: Definitions, Assessment and Student Academic Misconduct to avoid actions which might contravene 精东传媒app policies and practices. These policies can be found at .

Assessment notes

  1. Students must familiarise themselves with the USQ Assessment Procedures (.

  2. Referencing in Assignments must comply with the Harvard (AGPS) referencing system. This system should be used by students to format details of the information sources they have cited in their work. The Harvard (APGS) style to be used is defined by the USQ library鈥檚 referencing guide. These policies can be found at

Other requirements

  1. Students will require access to e-mail and internet access to UConnect for this course.

Date printed 6 November 2020